Papers on 2023

Boron removal from geothermal brine using hybrid reverse Osmosis/Microbial desalination cell system

Agriculture sector leads worldwide as the most water consuming sector with water demand. Since natural water resources cannot keep up with the demand, a shift from conventional water resources to unconventional ones is needed. While geothermal water was gaining importance for its energy content, small-scale (<10 L/s) energy plants were not required to reinject their spent geothermal brine. As geothermal resources align with agricultural areas in Western Anatolia, discharge of untreated brine might have severe adverse effects on crop yields and soil quality. In this study, we investigated use of spent geothermal brine for irrigation after treatment with Reverse Osmosis/Microbial Desalination Cell (RO/MDC) hybrid process. Treatment efficiencies for B, COD, As, Li, Fe, Cr concentrations and energy production values were determined. Treated water was initially evaluated for irrigation considering three quality categories (I, II, and III) comprised of parameters. Although B concentrations in MDC-treated permeate (3.29 mg/L) and concentrate (2.99 mg/L) streams were not low enough to meet Quality I criterion (<0.7 mg/L), they can be still utilized in irrigation of moderate-to-high tolerant plants.

Insights into engineered graphitic carbon nitride quantum dots for hazardous contaminants degradation in wastewater

Increased environmental pollution is a critical issue that must be addressed. Photocatalytic, adsorption, and membrane filtration methods are suitable in environmental governance because of their high selectivity, low cost, environment-friendly nature, and excellent treatment efficiency. Graphitic carbon nitride (g-C3N4) quantum dots (QDs) have been considered as photocatalysts, adsorbents, and membrane materials for wastewater treatments, owing to their stability, adsorption capacity, photochemical properties, and low toxicity and cost. Modified g-C3N4 QD-based material adsorbents, photocatalysts, and membranes present potentially applicable effects, such as removal of most waterborne contaminants. Excellent results were obtained for the reduction of contaminants. Overall, this paper provides comprehensive background on g-C3N4 QD-based materials and their diverse applications in wastewater treatment, and it presents a foundation for the enhancement of similar unique materials in the future.

Identifying Geogenic and Anthropogenic Aluminum Pollution on Different Spatial Distributions and Removal of Natural Waters and Soil in Çanakkale, Turkey

The Çanakkale−Kirazlı region (Turkey) is enriched with minerals, especially aluminum (Al), which dangerously get transported into aquatic media due to several mining and geological activities in recent years. In this study, Al and other potentially toxic metals (PTMs), including B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Si, and Zn, in both water and soil samples, were measured for quality determination. Selected metals were also analyzed by the enrichment factor (EF), the geoaccumulation index (Igeo), the contamination factor (CF), and the pollution load index (PLI) to evaluate both water and soil pollution geogenically or anthropogenically. Also, the metals were clustered to support the pollution source with Pearson’s correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA). To perform pollution assessment, two fundamental treatment processes to remove Al pollution from the sample, including the highest Al concentration (38.38 mg/L) in water were applied: (1) precipitation with pH adjustment and (2) removal with ion exchange. The results demonstrated that the study area was mostly influenced by geogenic aluminum pollution.