Course Title: Current Topics in Environmental Engineering (ENV 451)

Course Objectives:

- To explore the latest advancements and trends in environmental Sciences and biotechnology.
- To study innovative approaches to solving contemporary environmental issues using Molecular biology techniques.
- To critically assess the impact of new genetic engineering methods on environmental management.
- To understand emerging environmental Sciences' regulatory, ethical, and societal implications.

Topic 1: Introduction to Emerging Trends in Environmental Engineering (10 %)

Overview of Recent Advances:

- o Key breakthroughs in biotechnology relevant to the environment and its work fore
- The role of molecular biology and genetic engineering in addressing current environmental challenges.

Prospects:

 Areas of growth in environmental sciences, including synthetic biology, waste management using bioremediation methods, energy production, and ecosystem restoration.

Topic 2: Environmental Genomics (20 %)

Microbial genomics:

- o An Introduction to Genes and Genomes
- Recombinant DNA Technology and Genomics
- Proteins as Biotechnology Products
- Application of high-throughput sequencing to study environmental microbial communities.
- Role of metagenomics in identifying microbial diversity and potential biotechnological applications.

Topic 3: Advances in Bioremediation Technologies (20 %)

• Microbial Biotechnology

• Microbial Bioremediation:

- Recent advancements in the use of genetically engineered microbes for bioremediation.
- Novel microbial consortia for treating emerging pollutants (e.g., pharmaceuticals, microplastics).

• Phytoremediation:

 Recent developments in plant-based remediation include hyperaccumulator plants for heavy metals and nanomaterials. o Genetic modifications to enhance phytoremediation capabilities.

• Nanotechnology in Bioremediation:

 Use of nanoparticles and nanomaterials to support microbial degradation processes.

Topic 4: Marine Biotechnology and Climate Change (10 %)

• The role of marine organisms in carbon cycling and mitigation of ocean acidification.

Topic 5: Use of some bioinformatic tools in environmental sciences (10 %)

• Use bioinformatics, gene editing, and microbial technologies to improve crop yield and soil health.

Topic 6: Ethics and Public Perception (10 %)

• Ethical Issues:

 Ethical debates on gene editing, synthetic organisms, and environmental impacts of biotechnological interventions.

Assessment Methods:

- Research Papers: Students analyze and critique recent research papers on topics related to environmental science (10 %)
- **Presentations:** Students present on innovative bioengineering applications in environmental science (10 %)
- Examinations: Cover current trends, emerging technologies, and environmental implications as mentioned above (80%)
- Midterm exam: 30%Final exam: 50%

Recommended Textbooks and References:

- "Environmental Biotechnology: Principles and Applications" by Bruce E. Rittmann and Perry L. McCarty
- "Introduction to Biotechnology" by William J. Thieman and Michael A. Palladino
- "Introduction to Genetic Engineering" by Desmond S. T. Nicholl
- Research Articles and Journals:
 - o Journal of Environmental Biotechnology
 - o Nature Biotechnology
 - o Biotechnology Advances

This syllabus focuses on the latest trends and innovations in environmental sciences, providing students with up-to-date knowledge and critical thinking skills to address modern environmental challenges.